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Entrainment and the structure of turbulent flow 
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Emmanuel College, Cambridge 

(Received 4 August 1969) 

Although the entrainment of non-turbulent fluid into a turbulent flow occurs 
across sharply defined boundaries, its rate is not determined solely by the 
turbulent motion adjacent to the interface but depends on overall properties of 
the flow, in particular, on those that control the energy balance. In  the first place, 
attention is directed to the many observations which show that the motion in 
many turbulent shear flows has a structure closely resembling that produced by 
a rapid, finite, plane shearing of initially isotropic turbulence. The basic reasons 
for the similarity are the stability and permanence of turbulent eddies and the 
finite distortions undergone by fluid parcels in free turbulent flows. Next, the 
existence of eddy similarity and the condition of overall balance of energy are 
used to account for the variation of entrainment rates within groups of broadly 
similar flows, in particular mixing layers between streams of different velocities 
and wall jets on curved surfaces. For some flows which satisfy the ordinary 
conditions for self-preserving development, no entrainment rate is consistent 
with the energy balance and self-preserving development is not possible. Ex- 
amples are the axisymmetric, small-deficit wake and the distorted wake. Finally, 
the implications of an entrainment rate controlled by the general motion are 
discussed. It is concluded that the relatively rapid entrainment in a plane wake 
depends on an active instability of the interface, not present in a constant- 
pressure boundary layer whose slow rate of entrainment is from ‘passive’ dis- 
tortion of the bounding surface by eddies of the main turbulent motion. Available 
observations tend to support this conclusion. 

1. Introduction 
Most free turbulent flows depend for their energy supply on converting mean- 

flow energy to turbulent energy by entrainment of non-turbulent ambient fluid, 
and it is natural to see in the actual processes of entrainment the key to the mean- 
flow problem of turbulence, the prediction of mean velocities and turbulent 
stresses. In  fact, the entrainment process is only one of a group of processes whose 
combined interactions determine the level of turbulent energy dissipation and 
the entrainment rate, and it is not immediately clear that any one of them is the 
dominant influence. In  some respects, an analogy may be drawn with the closed 
control-loops of servo-mechanisms and feed-back circuits where all elements of 
the loop are essential for its operation but the important properties are controlled 
by one particular element and are nearly independent of the remainder. A t  a 
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time when much attention is being paid to the form and motion of the bounding 
surface over which the entrainment occurs, it is desirable to emphasize that 
details of the entrainment process will be dynamically similar in different flows- 
in jets, wakes and boundary layers-only if the entrainment mechanism is the 
dominant element of the ‘ control loop ’. If it  is not, the rate of entrainment and 
perhaps the nature of the entrainment process will be affected by other elements. 

Another important element of the ‘control loop ’ is the production and dissipa- 
tion of turbulent energy deep within the flow and, long before the discovery of 
the sharply defined boundary between turbulent and non-turbulent fluid, the 
mixing-length theories of L. Prandtl and of G. I. Taylor used, in effect, the energy 
balance and an assumption of structural similarity of turbulent motion. More 
recently, Bradshaw, Ferriss & Atwell (1967) have refined this approach and have 
been able to predict the development of boundary layers in a wide variet’y of 
pressure gradients. The interesting point about their work is that it determines 
an entrainment rate in good agreement with observation while completely 
ignoring details of the entrainment mechanism. My purpose here is to discuss 
the nature and origin of the ‘universal’ structure of fully sheared turbulence 
as it appears in different flows, to give examples of the prediction of entrainment 
rates, and to suggest how the entrainment mechanism conforms to the wide 
range of entrainment rates prescribed by the structural similarity and the energy 
balance. 

2. Notation and axes of reference 
With stated exceptions, two-dimensional mean flows are considered, ho:mo- 

geneous in the Oy direction, with the general direction of flow in the Ox direction 
and with the strongest gradients of mean values in the Oz direction. For oon- 
venience, the subscript notation is also used so that a position vector may have 
components (x, y, z )  or (x,, x2, x3). Then: 

IT, 0, W are the components of the mean velocity; 
u, v, w are the components of the velocity fluctuation, q2 = u2 + v2 + w2; 
P is the mean pressure; 
U,, 0, W, are the components of the mean velocity outside the turbulent flow; 
Rij(r; x) = ui(x) ui(x + r) is the double velocity correlation function; 
7 = - UW is the turbulent Reynolds stress; or T is the time-interval for space- 

L is the integral scale of the hypothetical, initially isotropic turbulence before 

cc is the total or effective strain at  a point; 
vt is the eddy viscosity; 
D, is the eddy diffusivity for effective strain; 
u,, qo arc the scales of mean velocity variation and of velocity fluctuation for a 

I ,  is a length scale for the section; 
/3 is a non-dimensional entrainment constant (not yet defined) ; 
R, = uolo/v,  is a flow constant, defined so that uo is the maximum difference of 

time correlations; 

distortion; 

section of the flow; 
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mean velocity across the flow, I ,  is the variance of the velocity distribution about 
its maximum value (or, for mixing layers, the variance of the velocity gradient), 
and vT is the average eddy viscosity obtained by fitting the calculated profile for 
constant eddy viscosity to the measured mean velocity profile. Note that and 
R, are independent of position in any one self-preserving flow but take different 
values in different flows. 

3. The behaviour of eddy structures in homogeneous turbulence 
A remarkable feature of turbulent flows is the comparative stability and per- 

manence of the flow patterns that are usually called eddies. Use of the term eddy 
implies that the whole motion can be considered to be composed of the super- 
position of the velocity fields of many simple elementary eddies, not much more 
complex in structure than the Hill spherical vortex or the vortex ring. For the 
concept to be useful, the duration of a single eddy must be relatively long and 
measurements in homogeneous turbulence show that the degree of permanence 
is remarkable. 

A good example is the slowness with which grid turbulence approaches the 
statistically most probable state of isotropy. Comte-Bellot & Corrsin (1966) find 
that the index of anisotropy, u!/ui - 1, decreases by a factor of two while the 
energy decreases by a factor of twenty. The implication that the eddies lose 
energy and decay without considerable change in their flow patterns is confirmed 
in more detail by measurements of space-time correlations by Favre, Gaviglio & 
Dumas (1962, p. 419) and by Frenkiel & Klebanoff (1967). The correlations trace 
the changes in velocity pattern in a frame moving with the mean flow, which 
may be caused either by bodily translation of whole eddies in the velocity fields 
of their neighbours, by a self-induced velocity of propagation like that of a 
vortex-ring, or by real changes in the velocity patterns of individual eddies. 
Bodily translations ‘diffuse’ the correlation function while changes of pattern 
reduce its magnitude, and the contributions of translation and pattern change 
can be calculated from the observations (appendix A). Prom the measurements 
of Fame et al. for a non-dimensional time delay, U..T/M = 7-57, it is estimated 
that the auto-correlation coefficient for individual eddies is 0.85, compared with 
a correlation coefficient moving with the mean flow of 0.41 and an energy re- 
duction in the ratio 0.80. It is probable that some of the loss of auto-correlation 
is an effect of the increase in diameter of typical eddies by the diffusive action of 
small eddies, the increase being about 10% over the time interval. In  any event, 
the larger energy-containing eddies of grid turbulence retain their basic structure 
over periods long enough for a large part of their energy to be dissipated by 
turbulent transfer to smaller eddies. 

If the larger eddies in shear-free turbulent flow are very stable structures, it 
appears likely that mean velocity gradients only distort the velocity patterns 
without causing their disintegration. In  terms of the Fourier representation of 
the velocity field, stability of large eddies during substantial decay means that 
the non-linear transfer of energy from components of small wave-number (the 
larger eddies) to those of considerably larger wave-number is qualitatively similar 

_ _  
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in action to an effective viscosity and that transfer between components of com- 
parable wave-numbers is weak. Then the effect of a mean velocity gradient is 
to modify and to redistribute the energy of components forming the larger eddies 
nearly in the wa.y predicted by the rapid-distortion theory of Batchelor & 
Proudman (1954) or, better, by the modified form which models the transfer 
to smaller eddies by a coefficient of eddy viscosity (Pearsoii 1959). 

If grid turbulence is passed through a duct of changing section, it is subjected 
to homogeneous, irrotational distortion and many observations of its behaviour 
have been made, particularly for plane straining. The most extensive are those 
by Tucker & Reynolds (1968) and by Markcha1 (1967) and they show that ( i )  the 
ratios of the intensities of the turbulence component velocities continue to 
change with increasing strain and show no sign that an equilibrium struuture 
develops after long straining, and (ii) if some allowance is made for contributions 
from the less anisotropic smaller eddies, the ratios are not dissimilar from those 
predicted by the rapid-distortion theory. Available measurements of correla- 
tion and spectrum functions are in good agreement with predictions from the 
theory (see figure 1 and Townsend (1954)). 

0.4 - 

0.3 - 

0.2 - 

6.1 - 

0 -  

-0.11 I I I I 
0 1 2 3 4 

TIM 

FIGURE 1. Comparison of calculated correlations for irrotational plane shear with measure- 
ments by Grant (1958). (Oxl is the direction of expansion, Ox3 is the direction of compression, 
and the calculated correlations are for a total strain ratio of four. The ‘initial’ integral 
scalc is taken as L = +M.) 

In  ordinary shear flows the distortion by the mean flow is nearly a plane shear- 
ing with rotation, and it is not possible to produce such a distortion by than-ges 
in the duct section. Rose (1966) has measured turbulence in the flow behind a 
non-uniform grid designed to produce a uniform gradient of velocity transverse 
to the stream, and he found that the intensities of the three components appear 
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to approach asymptotic values for total strains greater than two. Comparison 
with the theory is made uncertain by lack of knowledge of the initial motion 
just downstream of the grid, but the results are in very fair agreement with those 
calculated assuming rapid distortion and plausible values for the transfer to 
smaller eddies (for details see appendix B). Predicted variations of the intensities 
are shown in figures 2 and 3, and it is seen that, although no asymptotic universal 
structure is expected, the intensity ratios vary little for total strains in the range 
1.5-3-5. Since the maximum strain in the experiments was less than three, 
experiment and theory agree on this point. Lastly, those components of the 
correlation function that were measured agree well with the predicted forms 
(figure 4). 

0 
+ .d 
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0 
.3 + 
2 0.4 

0.2 N=0.4 iZ 
OL 1 I I I I 
0 1 2 3 4 5 

01. 

FIGURE 2. Variation with total shear of intensities of the velocity components, calculated 
from the rapid-distortion approximation for two values of N .  

4. The structure of turbulence in shear flows 
Since free turbulent flows continually entrain ambient fluid, the ‘ages’ of 

parcels of turbulent fluid, i.e. the times that have elapsed since they were first 
entrained and became turbulent, are usually comparable with local time-scales 
at their present position, among others the reciprocal of the local velocity 
gradient. Then the total strain experienced by any parcel is not large compared 
with one and it is probable that the structure of the existing turbulence is the 
product of finite distortion of turbulent motion generated by the entrainment 
process. Whether the actual entrainment process is a runaway instability of the 
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the bounding surface, overturning by the main eddies of the turbulence, or a 
‘nibbling’ by the smallest eddies, the resultant initial motion is likely to be quasi- 
isotropic in the sense that it is not highly organized and spatially orientated. 
To test the hypothesis, measurements of correlation functions in ordinary shear 
flows can be compared with the predictions of the rapid-distortion theory for 
a moderate total strain. Intensities and correlation functions have been calculated 
for initially isotropic turbulence with the ‘exponential’ correlation function, 

0.4 

‘T 0.2 

that has undergone plane shearing with a total strain ratio of two. The actual 
value of the ratio does not seem to be critical. 

I 

0 2 4 6 8 10 
a 

01 I I I I I 
0 2 4 6 8 10 

a 

FIGURE 3. Variation with total shear of ratios of Reynolds stress to turbulent intensities, 
calculated from the rapid-distortion theory for three values of N .  

From figure 5 it can be seen that the set of ‘normal’ correlation functions- 
those with displacements parallel to the axes of reference-has a surprisingly 
complex structure, suggesting that the distortion selects eddy structures of a 
highly characteristic form. The contours of equal correlation in the x,Ox, plane 
(figure 6 )  are also not simple, being nearly symmetrical about the axes for R33 
and R,, and elongated at  an angle to the axes for R,, and R22. Because of the 
complexity, a close resemblance between the calculated correlations and observa- 
tions in real shear flows must be regarded as a strong indication that the eddies 
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in real shear flows are selected from unorganized turbulence by the shearing in 
the manner described by the rapid-distortion theory. 

The measurements of Grant (1958) are still possibly the most comprehensive 
and, in figure 7, his measurements of the normal correlation functions in a tur- 
bulent wake are compared with the calculated ones. For the set of nine curves, 
the only disposable constants are a single length scale and the total strain. Many 
other, less comprehensive, measurements in other flows have been made, and 
table 1 compares the observed and predicted forms of the normal correlations, 
using a simple code to specify the general form of the correIation curve, i.e. 
whether or not it takes negative values, and its scale. Except for measurements 
in the cylindrical mixing layer of a circular jet where vortex rings are the 
dominant elements of the flow, the agreement is very good. 

0.4 t 4 
O6 t \ 

0 1 2 3 4 

r/L 

F I G ~ E  4. Comparison of calculated correlations with the measurements of Rose (1966). 
(At Y/h  = 0.5, X / h  = 9.0, except for &(T, 0, 0) for which X / h  = 7.5. The ‘initial’ 
integral scale is taken to be 1.0 in.) 

Measurements of correlations with displacements inclined to the usual axes 
are less common, the most extensive being those of Grant in the wake and the 
boundary layer and of Tritton (1967) in the boundary layer. The shape of the 
correlation contours for displacements in the z1 Ox, plane determines whether 
correlation curves for constant lateral ( r,) displacement have their maximum 
value at  zero streamwise displacement or not. Asymmetry of the R,,(rl, 0, r,) cor- 
relation was first reported by F’avre, Gaviglio & Dumas (1957) in their measure- 
ments of Elpace-time correlations in a boundary layer, and later measurements of 
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FIGURE 5. Normal components of the correlation function calculated for a = 2. 



C
yl

in
dr

ic
al

 
In

n
er

 
O

ut
er

 
R

ap
id

 
H

om
og

en
eo

us
 

m
ix

in
g 

b
o

u
n

d
ar

y
 

b
o

u
n

d
ar

y
 

C
om

po
ne

nt
 

di
st

or
ti

on
 

sh
ea

r 
W

ak
e 

la
y

er
 

la
y

er
 

la
y

er
 

C
ha

,n
ne

l 
&

&
&

&
&

&
&

 
-
 

+ 
-
 

+ 
-
 

+ 
-
 

+ 
-
 

+ 
-
 

+ 
-
 

+ 
-
 

9
 

R
11

 (
0

, 0
, V

)
 
-
 

3.
5 

(0
.0

1)
 

2.
1 

-
 

5
 

-
 

? 
7 

-
 

-
 

2.
9 

(0
.0

3)
 

2.
2 

-
 

3. 2 

-
 

5
 

-
 

5 
R

i,
 (

v,
 0

, 
0)

 
4.

2 
-
 

5-
 1
 

-
 

6 
8
 (

0.
05

) 
30

 
-
 

R
ll

 (
0

, r
r

 0
) 
-
 

1.
2 

(0
.0

8)
 
-
 

1.
2 

(0
.0

6)
 
-
 

2.
3 

(0
.0

8)
 
-
 

4.
2 

(0
.1

5)
 
-
 

2.
6 

(0
.0

2
) 
-
 

1.
7 

(0
.1

2)
 
-
 

1.
4 

(0
.1

3)
 

T
 

o
r 

2.
2 

-
 

R
a3

 (0
, 0

, r
) 

3.
8 

-
 

? 
R

,,
 (

r,
 0,

 0
) 

3.
8 

-
 

? 
R

1
3

 
(O

, 
O

) 
-
 

1
-0

5
 (0

.1
2)

 
? 
-
 

R
1,

 (
0,

 0
, T

)
 

3.
2 

-
 

3.
1 

-
 

2
.3

 (
0

.0
8

) 
-
 

-
 

3.
1 

(0
.0

6)
 

9 
1.

8 
(0

.0
3)

 
-
 

-
 

1.
5 

(0
.1

6)
 
-
 

4 
-
 
-
 

3.
5 

-
 

? ? ? 

4
 (

0.
18

) 
-
 

? 4
 (

0.
14

) 
6 

(0
.0

2)
 

-
 

? ? ? 

2 
2.

2 
(0

.0
8)

 
Q

 & 
1.

9 
(0

.0
6)

 
? 

8 

-
 

$ %
 

? 
-
 

-
 

7 -
 

5
 (

0.
02

) 
3.

0 
-
 

1
 *5

 

4.
4 

-
 

-
 

1.
2 

(0
.0

8
) 

1
.3

 (
0.

06
) 
-
 

1.
3 

(0
.0

6)
 
-
 

-
 

-
 

9 
1.

4 
-
 

-
 

2 
(0

.0
2)

 
-
 

1.
0 

(0
.0

2)
 

z m 
3 

-
 

4 
? 

4 
I
 

7 
? 

-
 

-
 

3
 (

0.
20

) 
-
 

0.
8 

(0
.1

8)
 

? 
? 

3 
? 

$ 
-
 

w
 

x 2
 

5
 

th
e 

co
rr

el
at

io
ns

 o
f 

re
ve

rs
ed

 s
ig

n 
ar

e 
le

ss
 t

h
an

 0
.0

1 
of

 t
h

e
 m

ax
im

um
. 

F
o

r 
ea

ch
 f

lo
w

 t
h

e 
sc

al
e 

of
 l

en
g

th
 h

as
 b

ee
n 

ch
os

en
 t

o
 m

ak
e 

co
m

pa
ri

so
n 
2
 

s 
co

nv
en

ie
nt

 b
u

t 
pr

es
er

vi
ng

 t
h

e 
ra

ti
o

s 
of

 
sc

al
es

 i
n

 e
ac

h
 f

lo
w

. 
N

o 
in

- 
fo

rm
at

io
n 

is
 d

en
o

te
d

 b
y

 '
 ? 

'. 
S

ou
rc

es
 a

re
: 

H
om

og
en

eo
us

 s
he

ar
-R

os
e 

(1
96

6)
 ; 

w
ak

e,
 i

n
n

er
 a

n
d

 
o

u
te

r 
b

o
u

n
d

ar
y

 l
ay

er
-G

ra
nt

 
(1

95
8)

 ; 
cy

li
nd

ri
ca

l 
m

ix
in

g 
la

ye
r-

B
ra

d-
 

sh
aw

 e
t 

al
. 

(1
96

4)
 ; 

tw
o-

di
m

en
si

on
al

 c
ha

nn
el

-C
om

te
-B

el
lo

t 
(1

96
1)

. 

T
A

B
L

E
 1.
 N

or
m

al
 c

or
re

la
ti

on
 f

un
ct

io
ns

 i
n

 s
he

ar
 f

lo
w

s 

N
ot

es
. 

A
n 

en
tr

y
 i

n
 t

h
e 

' +
 ' 

co
lu

m
n 

in
di

ca
te

s 
th

a
t 

th
e 

co
rr

el
at

io
n 

do
es

 n
o

t 
ch

an
ge

 s
ig

n,
 a

n
d

 t
h

e 
n

u
m

b
er

 i
s 

th
e

 v
al

ue
 o

f 
r 

fo
r 

w
hi

ch
 t

h
e 

co
rr

el
at

io
n 

is
 0

.0
5 

of
 i

ts
 m

ax
im

um
 v

al
ue

. 
A

n
 e

n
tr

y
 i

n 
th

e 
-
 ' 

co
lu

m
n 

in
di

ca
te

s 
th

at
 t

h
e 

co
rr

el
at

io
n 

ch
an

ge
s 

si
gn

, 
th

e 
nu

m
be

r 
ou

ts
id

e 
th

e 
b

ra
ck

et
 g

iv
es

 th
e 

v
al

u
e 

of
 r

 a
t c

ro
ss

-o
ve

r,
 a

n
d

 th
e 

on
e 

in
si

de
 th

e
 b

ra
ck

et
 

gi
ve

s 
th

e 
m

ax
im

um
 o

f 
re

ve
rs

ed
 s

ig
n 

as
 a
 f

ra
ct

io
n

 o
f 

th
e 

v
al

u
e 

fo
r 

r 
=

 0
. 

T
h

e 
ca

lc
u

la
te

d
, 

ra
p

id
-d

is
to

rt
io

n
, 

en
tr

ie
s 

ar
e 

gi
ve

n 
in

 b
o

th
 

fo
rm

s 
if 



22 A .  A .  Townsend 

-2 - 1  0 1 2 

r111 

-2 -1 0 1 2 3 
I 

-2 - 1  0 1 2 
r,lL 

FIGWE 6. Contours of constant correlation in the plane ra = 0, calculated for 01 = 2. 
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this and other correlations agree with the predictions (table 2 ) .  Excepting the 
measurements in the cylindrical mixing layer, differences between the observed 
and predicted forms of the correlation function are very few and may plausibly 
be attributed either to small experimental errors or to the influence of entraining 
motions that are not properly part of the main turbulent structure. 

Rapid distortion 1.5 1.5 0.3 0 
Wake (Grant 1958) 1.2 1.2 0.1 ? 

(Favre et al. 1957) 3 ? ? ? 
(Grant 1958) ? ? 0.2 ? 

(Bowden & Howe 1963) 1.5 ? 0 ? 

Boundary layer 

(Tritton 1967) 1.5 ? 0 0.7 

Notes. The tabulated values are of rm/r3 where r,,, is the value of rl for which Rjj(rl, 0, r3)  
has a maximum value of about 0.5 with respect to variation of rl, i.e. 

aRij 

a?, 
__ = 0 and R j j  = 0.5. 

The direction of the Oxl axis is always chosen so that aU,/ax3 is positive. 
N o  information is denoted by ‘ ? ’. 

TABLE 2. Positions of maximum correlations for separations with 
constant displacement in 02, direction 

1 

0.5 

0.5 

0 
1 1 2 3 4  

h 

1 1 2 3 4  
rl L rl L rlL 

FIGURE 7. Comparison of calculated normal components of the correlation function with 
the measurements of Grant (1958) in a plane wake. (U ,d /v  = 1300, x/d = 533, fixed wire 
at z/d = 4 except for R,,(O, 0, r )  for which zld = 2.8. The ‘initial’ integral scale is taken 
as L = 3d and the total strain is a = 2.) 

5. Effective total shear for free turbulent flow 
With the evidence that the observed structure of the turbulent motion in 

shear flows resembles closely the motion arising from rapid, finite shear of 
isotropic turbulence, it is important to have an estimate of the magnitudes of 
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the total shear undergone by fluid parcels since their original entrainment into 
the turbulent flow. Supposing for the moment that the scale of the motion is 
small compared with the width of the flow, the total strain of a parcel is the time 
integral of the rate-of-strain along its path since entrainment, but different 
parccls successively a t  the same place will have travelled along different paths 
and have different total strains. Qualitatively, the variations of path affect the 
mean total strain in much the same way as an eddy diffusivity of the mean total 
or the effective strain, a. Since a l l l a x  is the mean rate of strain, the effective 
strain satisfies the equation, 

where D, is the eddy diffusivity for effective strain. 
It is not difficult to show that the equation for effective strain takes a self- 

preserving form if the flow is self-preserving. In  a self-preserving flow for which 

(5 .2 )  

the equations for momentum and strain are 

and (5.4) 

assuming constant values across any section for the eddy viscosity uT and the 
diffusivity D,. Appendix C deals with solutions of these equations, in particular 
for the case of equal eddy viscosity and diffusivity, with the results given in 
table 3. 

Effective Flow 

Wak0 2.6 12.5 
Jet 6.1 28 
Mixing layer 7.5 30 

TABLE 3 

Flow strain constant R, 

Boundary layer (constant-pressure) 10-15 55 

A conclusion from the tabulated results is that the effective strain has a 
maximum value of about one-fifth of the flow constant R, = uoZo/vT, defined so 
that u, is the maximum variation of mean velocity across the flow and lo is the 
variance of the velocity distribution (for wakes and jets) or of the distribution 
of velocity gradient (for mixing layers and boundary layers). In  similar flows, 
the proportionality of R, and a, is a consequence of the similarity of the dis- 
tributions. At the position of maximum effective strain, the equation (5.1) reduces 
to au a2a 

az TS 0 = - + D  (5 .5 )  
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and, assuming universal distributions of (u - U,) and of a, it follows that 

25 

With the ratio D,/v, near one, maximum effective strain and maximum velocity 
gradient both occur near z = I, ,  and near proportionality of am and R, is to be 
expected. 

The calculations of the maximum effective strains in free turbulent flows shows 
first that these strains are not large but also that there is considerable variation 
between one flow and another. Reasonable modifications of the basic assumptions 
are not likely to change these conclusions and, in view of the close resemblance 
between the spatial structures of shear turbulence and the ‘rapid-distortion 
turbulence’, it  is profitable to compare intensity ratios observed in the various 
flows with the calculated ratios for total strains of the appropriate magnitudes. 
From figure 3, the predicted values of the ratio ofthe Reynolds stress to the total 
turbulent intensity, 73, are seen to reach a maximum value for total strain of 
about 2-5 and to decrease slowly for increase of strain, a result that is nearly 
unaffected by inclusion of a viscosity term to model the energy transfer to smaller 
eddies. The trend of total strains in table 3 suggests that the ratio should de- 
crease systematically over the sequence-wakes, jets and mixing layers, boun- 
dary layers-and the rather erratic measurements tend to confirm the suggestion. 
The standing of the hypothesis of structural similarity is: (i) that eddies of 
complex but broadly similar structure are the dominant eddies in all shear flows; 
(ii) that the stress-intensity ratio, rmlq& is roughly the same in all flows, simply 
because the effective strains are not far from the value for maximum of the ratio, 
712; and (iii) that the variation of the stress-intensity ratio between different 
flows is not negligible and has a systematic dependence on the effective strain, 
in its turn dependent on the flow constant, R,. 

6. The dominant eddies in inhomogeneous shear flow 
All real shear flows are more or less strongly inhomogeneous and the appearance 

in them of eddies that are very similar to those found in homogeneous shear 
flows needs some explanation. Any explanation must involve the form of the 
dominant eddies of the flow, and there are two ways of arriving at  the form 
from the correlation functions. The most objective is that of Lumley (1965, 
p. 166) which involves considerable computation. The alternative is a mixture 
of inference and guesswork based on the form of the correlation functions and, 
for a two-dimensional wake, Payne (1966)) using the Lumley method, and Grant 
(1958)) guessing, have arrived at fairly similar conclusions. A simple model that 
accounts for most of the features of the calculated correlations is sketched in 
figure 8. The eddy streamlines (relative to the mean flow) lie nearly on the sur- 
faces of two cylinders with parallel axes inclined in the x1 Ox3 plane and separated 
in the Ox, direction, and their planes of circulation have normals more inclined 
to the Ox, direction than the axes of the cylinders. Certain features of the correla- 
tion make it clear that regions of ‘negative Reynolds stress’, i.e. positive uw 
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product, are present and so the circulation cannot be exactly in a plane. The 
flow pattern will be called a double-roller eddy, but it might also be described as 
a section of a linear jet or as diffused vortex-pair. It resembles closely the eddies 
studied in boundary-layer and pipe flow by Kline et al. (1967). 

Xi 

FIQURE 8. Sketch of inclined double-roller eddy. (Arrows on the lines around t,he cylinder 
indicate the streamlines of the eddy.) 
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FIGURE 9. Contours of zero R,,(r,, 0, measured in a plane wake by Grant (1958). 
To simplify comparison with the contours in figure 6, which refer to positive rate-of-strain, 
the co-ordinates have been changed so that the fixed wire is a t  xs/d = - 7.6 and the direc- 
tion of r1 is opposite to the direction of flow. 

In  inhomogeneous flows such as a wake, the sense of the velocity gradients 
changes across the central plane of symmetry and it is found that the roller 
axes reverse their inclination to the Ox, direction so that each roller of the eddy 
is deformed into a bent, hair-pin shape. The effect is well shown by Grant’s 
measurements of the Rz2(r,, 0,  r3) correlation (which is little affected by the 
motions responsible for entrainment), shown in figure 9, and it appears both in 
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his reconstruction of the eddies and in that of Payne. It appears that each 
sect ion of the double-roller interacts with the mean volocity gradient in much the 
same way as if it were in a homogeneous field, and that the coherence of motion 
between different sections is limited to general alignment and matching of 
circulation in the xlOx, plane. The behaviour may be connecOed with the com- 
paratively compact form of the eddy in the direction of shear. 

To use the concept of structural similarity in the description of the mean flow 
properties, two assumptions must be made. The first is that the ratio of Reynolds 
stress to total intensity is either constant or a known function of the effective 
strain. The second concerns the dissipation length-parameter, i.e. the effective 
length scale of the dominant eddies for transfer of energy from them to the smaller 
eddies. There is good experimental evidence that it is nearly the same fraction of 
the flow width in a variety of flows, possibly because the dominant eddies are 
as large as they can be within the turbulent fluid. 

7. Entrainment constants of self-preserving flows 
By assuming similarity of the profiles and mean velocity, turbulent intensity 

and rate of energy dissipation, it is possible to give a unified description of the 
rates of spread of all self-preserving jets and wakes (Townsend 1966; Newman 
1968). The basic assumptions are that in all the flows, the profiles have the 

(7.1) 

forms, 
- 01 = u,f(z/lo), 

qz = 4:9(z/lo), 

E = 48oh(z / lo ) ,  

- 

wheref, g,  h are universal functions, and uo, qo, I ,  are scales of velocity and length 
depending on x in the particular flow. By inserting these expressions in the 
equations for the overall balances of momentum and total energy, 

it is possible t o  obtain an equation for the entrainment constant, 

whose coefficients are non-dimensional integrals of the distribution functions 
and the ratio of the scale of turbulent velocities, qo, to the scale of mean velocity 
variation, uo. In  any particular self-preserving flow, the ratio is constant but it 
varies from flow to flow. 

From the momentum equation the ratio of maximum stress to uo can be 
calculated, and then the ratio qo/uo can be found if the effective value of r,/q; 
is known. Defining the velocity scale of the turbulent motion so that q: is an 
average intensity for the whole flow, the stress-intensity ratio at  the position of 
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maximum stress is a good approximation to the effective value of rm/q:. The 
previous discussion of effective strain and the predictions of the rapid-distortion 
theory indicate that r/? is not constant but diminishes slowly as the effective 
strain, which is nearly proportional to the flow constant and inversely propor- 
tional to the entrainment constant, increases. 

For strain ratios above four, a range covering jets, mixing layers and boundary 
layers but not wakes, the variation of r/? can be approximated by 

r/$ cc a-”, 

where n is less than one. For flows with similar distributions of velocity and 
shear stress, 

and so ~ F l c c  uoqo. If n = I, this agrees with the ‘mixing-length’ relation pro- 
posed by Newman (1968). The non-linear diffusion model of Nee & Kovasznay 
(1969) implies that R, is a constant fraction of q:/u:, equivalent to n = 0 and 
TJqg = constant or to similarity of the turbulent motion in all flows. 

To illustrate the procedure for normal self-preserving flows, details are given 
in appendices D and E for plane mixing layers with different velocities of the 
bounding streams and for wall jets on curved surfaces. For the plane mixing 
layers, the analysis shows that the entrainment constant, in this case 

is nearly independent of the velocity ratio U,/U,, in agreement with observations 
by Sabin (1963). The result is that expected from elementary dimensional argu- 
ments, but the case of the wall jets is more interesting. It is known that a curved 
wall jet spreads less rapidly on a convex surface than on a concave surface, and 
it is usual to explain the effect in terms of the inertial stability or instability of 
mean flow with curved streamlines. Although the structure and intensity o,f the 
turbulent motion may be affected directly by curvature of the mean flow, 
application of the similarity assumptions leads to a predicted dependence of 
angle of spread on curvature that is close to the observed values. Fekete (1.963) 
finds that wall jets on cylinders have angles of spread given by (in the present 
notation) 

(7 .5 )  

while the similarity calculations give the coefficient of l,/R as 4.8 if r,,/qi is 
independent of effective strain (R is the radius of curvature of the surface, 
positive for a concave surface). If the stress-intensity ratio varies in the expected 
way, the coefficient is less but the observed effect of curvature remains not far 
from the value found assuming no change of structure. The effect of curvahure 
involved depends on changes in the stress distribution needed to balance the 
effects of the lateral pressure distribution induced by the curvature of the flow. 

The equations for the entrainment coilstants obtained from the similarity 
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assumption have the form, 

(shape parameters) +p- q; (shape parameters) = p* (shape parameters), 
7, 

(7.6) 

the bracketed terms depending only on the shapes of the distributions of mean 
velocity and turbulent intensity. The first term represents the gain of mean flow 
energy by advection, the second the gain of turbulent energy by advection, and 
the third the loss of energy by turbulent dissipation. The first and third are 
always positive but the second is positive in jets and wakes but negative in 
mixing layers and in most boundary layers. If the turbulent advection term is 
positive, there may be no real positive solution for /3, and no self-preserving 
development is possible although the ordinary conditions for self-preserving 
development (e.g. Townsend 1956) are satisfied. Three examples of this behaviour 
are known. The first is the periodic wake behind a grid of equally spaced, circular 
cylinders in which the mean velocity variation decreases exponentially with dis- 
tance while the turbulent intensity varies inversely as distance (Stewart 1951). 
A second is the far wake of an axisymmetric body. Here Baldwin & Sandborn 
(1968) and Gibson, Lin & Chen (1967) have found intermittently turbulent flow 
over the whole flow, and Baldwin & Sandborn find that the intermittency factor 
on the centre-line increases with distance from the body. Schlieren photographs 
of projectile wakes do not show intermittency on the axis. A possible reason is 
that the schlieren picture shows the total fluctuations along a line of sight while 
the intermittency probably arises from the development of ‘holes ’ in fulIy 
turbulent fluid by a process of ‘reverse transition’ (Mobbs 1968). In addition to 
this evidence of non-self-preserving development, the relative turbulent in- 
tensity is very large, the root-mean-square velocity fluctuation being more than 
the velocity defect (Kuo & Baldwin 1967). In  appendix P, i t  is shown that, 
starting with measured values for the turbulent jet in still air, no real solution of 
the entrainment equation exists. If the condition of self-preserving development 
is relaxed, i.e. the ratio qo/uo is allowed to vary, the similarity assumptions lead 
to the prediction that the ratio increases slowly but without limit, in agreement 
with the observations of very large turbulent intensities. It should be mentioned 
that the constants in the equation are completely different for axisymmetric 
wakes in ‘tailored’ pressure gradients (Newman 1968) and there self-preserving 
development is allowed. 

A third example is the distorted wake studied by Reynolds (1962) and by 
Keffer (1965), which is a two-dimensional wake developing of constant area but 
lateral dimensions varying as e + a  and e-ax. The self-preserving flow exists if 
the plane of the wake is in the direction of expansion, and the analysis predicts 
that the width of the flow is proportional to e-iax. Keffer found that the width 
does not decrease appreciably and is roughly constant through the distorting 
duct. In  appendix G, it is shown that no value of the entrainment rate is consistent 
with the similarity assumptions and self-preserving development, essentially 
because of the direct transfer of energy from the distortion flow to the turbulent 
motion. In  all three examples, the inability to adopt a self-preserving configura- 
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tion leads to a greater proportion of the energy flux through any section of the 
flow being in the form of turbulent energy and an asymptotic approach to a 
condition with negligible variation of mean velocity within the flow. 

8. The nature of the entrainment process 
Applications of assumptions of structural similarity by Bradshaw et al. (1967), 

by Townsend (1966) and in the previous section show that it is possible to predict 
entrainment rates to within 10 % for many free turbulent flows without needing 
to refer to the details of the entrainment process. On the other hand, the actual 
velocity with which ambient fluid passes through the turbulent ‘front’ is not 
a constant fraction either of the mean velocity variation or of the root-mean- 
square velocity fluctuation in the flow, andit appears that the effects of similarity 
dominate the control system determining the rate of entrainment. In  that case, 
the actual entrainment process must adapt itself to produce the imposed rate 
of entrainment. 

As it happens, details of entrainment have been studied in two flows with 
extreme values of the entrainment constant, two-dimensional wakes with very 
rapid entrainment and constant-pressure boundary layers with very slow en- 
trainment. Expressed as fractions of the mean velocity variations, entrainment 
rates in the wake are about eight times as large as in the boundary layer, or 
about twice as large expressed as fractions of the root-mean-square velocity 
fluctuation. So it is not surprising that some prominent features of the entyain- 
ment process in wakes are not observed in boundary layers. In  both flows, the 
interface between turbulent and non-turbulent fluid advances into the ambient 
fluid, probably by small-scale motions, but the rate of entrainment depends on 
continuous deformation and folding of the interface. Gartshore (1966) has shown 
that the amplitude of the folding is closely correlated with the entrainment rate, 
and it is likely that the small-scale erosion of the ambient fluid is really the final 
stage of the coarse entrainment by folding and engulfing by the large-scale motion 
of the interface. 

The differences in the large-scale folding between wakes and boundary layers 
are marked. In wakes, Grant (1958) and Keffer (1965) have found that the surface 
distorts into short lengths of periodic waves with crests aligned across the flow 
and that they develop in a way that is very similar to the well-known instability 
of a vortex sheet. In  agreement with the idea that the folding is caused by a 
Helmholtz type instability, the convection velocity of the folds is considerably 
different from that of the ambient fluid. In  boundary layers, no tendency to 
periodic groups can be found and the convection velocity of the folds is hardly 
distinguishable from the ambient velocity (Kovasznay 1968). The differences 
in shape of the folding may be seen in the longitudinal and transverse correlation 
functions for 6(x, t ) ,  the intermittency signal, and for 7, the displacement of the 
interface from its mean position. For the wake, the longitudinal &correlation 
shows a distinct minimum and rather uncertain evidence of additional maxima 
and minima (figure 10). Multiple-correlation measurements also show a tendency 
to periodicity. The results in figures 11 and 12 are obtained from analysis of 
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cine film taken by Fiedler & Head (1966) and show that, allowing for the effect 
of the small sample, both longitudinal correlations remain positive while the 
transverse correlations (in the Ox, direction) take large negative values. 
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FICCRE 10. Time delay (effectively longi- 
tudinal) correlation function of an inter- 
mittency signa.1 in a plane wake (U,d/v  = 
6000, z/d = 150, intermittency factor of 
0.48). 
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FIGURE 11. Longitudinal and transverse corrola- 
tion functions of tho intermittency signal in a 
constant-prcssure boundary layer (from cin6 film 
by Fiedler & Head (19GG)). 

Transverse 

FIGURE 12. Longitudinal and transversa correlation coefficients for 7, the displacement of 
the bounding surface, in a constant-pressure boundary layer (from cine film by Fiedler & 
Head (19GG)) .  

The nature of the interface folding in boundary layers indicates that it is the 
direct result of the velocity fields of the double-roller eddies of thc main motion, 
which are typically outward movements along a longitudinal ridge flanked by 
inward flow on two parallel hollows. Folding of the interface that is driven by the 
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main turbulent motion may be regarded as the basic entrainment mechanism, 
and, if i t  exists in a pure form, it should, by dimensional argument, lead to a rate 
of entrainment that is proportional to the velocity scale of the turbulent motion. 
In the wake, other entrainment mechanisms operate but Grant finds that periods 
of active entrainment alternate with periods of quiescence during which entrain- 
ment is slow and probably is carried out by the basic mechanism. Supposing that 
only the basic entrainment occurs during the quiescent periods, fluid flows across 
the interface with an entrainment velocity, 

wo = POP03 (8.1) 

where Po is a constant characteristic of the basic entrainment. Considering a small 
section of the interface and assuming longitudinal homogeneity, conservation of 
momentum requires that 

where 7 is the Reynolds stress in the turbulent fluid (here treated as a continuum 
in which ‘point’ stresses and velocities are allowed). The close analogy between 
heat and Reynolds stress (Townsend 1956) suggests that stress increases rapidly 
with distance from the interface, and the equation indicates that velocity also 
increases sharply. As a fraction of the mean velocity scale uo, the velocity jump is 

u,-u 1 7 1 7 4  

uo P O U O Q O  P o a o  
cc -- R,-*, -- 

and is expected to be more than twice as large in a wake (R, z 12) as in a boundary 
layer (R, z 55). If prolonged quiescence leads to an appreciable velocity jump, 
a Helmholtz instability of the interface is expected to develop and to cause 
additional active entrainment. If the velocity jump so calculated is small, the 
instability will be much weaker and its effects, and even its development, may 
be lost in the background of the basic entrainment. 

To sum up, it is argued that the level of turbulent motion and the ent;rain- 
ment rate are set by the structure of the whole flow. The actual entrainment 
mechanism is a folding in and engulfing of the ambient fluid by movements of 
the interface which in general have two origins. The basic origin is the velocity 
fields of the eddies of the main turbulent motion but, particularly in flows with 
large entrainment rates, entrainment by the basic mechanism alone leads to an 
instability of the interface and to the initiation of a period of active, more rapid 
entrainment. The rapid entrainment destroys the velocity profile that caused 
the instability and the flow reverts to a quiescent condition with the basic: en- 
trainment rate. The differences in entrainment rates between flows are related 
to the relative durations of the active and quiescent periods and to the magnitude 
of the entrainment rate during the active periods. 

The previous discussion of entrainment applies only to the ‘main sequence’ 
of free turbulent flows-wakes, jets, mixing layers and boundary layers- and 
it is not relevant to anomalous flows such as the axisyrnmetric, small-deficit 
wake or to flows with weak or negative entrainment rates-boundary layers 
in favourable pressure gradients and zero-momentum wakes. In these flows, the 
indentations of the interface are abnormally large (Fiedler & Head 1966; Mobbs 
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1968) but the net entrainment is small. Mobbs finds that the net entrainment 
in the zero-momentum wake is actually negative with some of the turbulent 
fluid reverting to (comparatively) non-turbulent motion, but that a positive 
net rate of entrainment is restored if the wake is distorted. In  the anomalous 
flows, substantial turbulent intensities are found in regions of comparatively small 
rates of shear and it is likely that the deeply indented interface is indicative 
of shear-free inhomogeneous turbulence. 

Appendix A. The effects on the space-time correlation function of eddy 
decay and movement 

Use of the term ‘eddy’ rather than, say, ‘Fourier component’ implies that an 
adequate description of turbulent motion can be obtained by superimposing 
velocity distributions of the form 

%(X, t )  = a(t)fdx - x,(t)), 

where a(t)  is the current amplitude of the eddy and x,(t) is the position of its 
centre, and the eddy forms, defined by the functions fi, depend mostly on a size 
parameter. Assuming tha.t the energy-containing eddies can be described by 
eddies of a single kind, the space-time correlation function for homogeneous 
turbulence is 

R&, 7; t )  = (ui(x, t )  ui(x + r, t + 7)) 
a(t) a(t + T )  f , (x - x,(t)) fj(x + r - xo(t + T ) )  d V(x,) s 

with the eddy centres occurring randomly in space with number density n. If the 
displacements of the eddy centres, 

Axo = X o ( t  + 7) - xo(t) 

are independent of the changes in ~ ( t ) ,  the eddy amplitude, we have 

where P(Ax,) is the probability distribution function for a centre displacement 
Ax, in the the time interval, t to t + T .  

In  this expression, the factor outside the integral depends on changes of eddy 
amplitude and its effect is to change the magnitude of the correlation function 
for fixed time-delay without affecting the form. The integral describes the effects 
of movement of eddies as a whole, either by their own velocity fields (as for vortex 
rings or Hill vortices) or by the velocity fields of other eddies, and its effect is 
equivalent to a diffusion of the function in correlation space. In  other words, 
eddy movements reduce the magnitude of the correlation for small displacements 
but increase it for large ones, leading to larger spatial extent of the correlation 
function at  fixed time delay. 

3 F L M  41 
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Space-time correlations in the flow downstream of a biplane grid have been 
published by Pavre et al. (1962) and by Frenkiel & Klebanoff (1967), and 
both show the increase in spatial extent. Assuming normal distribution of the 
centre displacements and isotropic turbulence with an exponential (spatial) 
correlation function (see equation (4.1)), the results of Favre et d. for a grid 
Reynolds number of 21,500 for Ulr/M = 40 can be fitted with (=)J/L =I 0.36 
and (a( t )  a( t+-)) /[(a( t )2)  (a( t  + T ) ~ ) ] *  = 0.86 for U,T/M = 7-57. The observed 
value of the correlation coefficient, 

~11(01T)/IIZL21(t) u"lt + 4 1 4  
is 0-41, indicating that centre displacements are responsible for thc greater part 
of the observed change in correlation in a frame of reference moving with the 
mean flow. Of the fall in the auto-correlation coefficient for the eddy amplitude 
from 1 to  0.86, a considerable part must be due to the natural growth in eddy 
size during decay rather than to changes of shape or basic structure. 

From the magnitude of the inferred displacements, the root-mean-square 
velocity of the eddy centres can be estimated as (@)&/7. It is interesting that 
it is within 10% of the root-mean-square velocity fluctuation, and it appears 
likely that the movement of the centres is a consequence of the eddy structure. 

Appendix B. Calculation of intensities and correlation functions after 
rapid distortion by plane shearing 

If a flow containing velocity fluctuations described by the Fourier coefficients 
of the series, ui = C a,(k, t) eik-= 

k 

undergoes plane shearing by the mean flow, 

U, = (da/dt) x3,  U2 = U, = 0, 

neglect of the turbulent interaction terms in the equations of motion (Pearson 
1959) leads t o  the result that  the coefficients change so that 
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4 V  N = -  
L2daldt’ 

where a is the total strain, carried out at uniform rate. The changes are linear 
in the amplitudes and may be written as 

a,& t )  = DA,*cc,(k,, 01, 

where the tensor A ,  depends only on the direction of the wave-number vcctor 
and on CL. 

If the fluctuations are one realization of a field of homogeneous turbulence, the 
three-dimensional spectrum functions at the initial instant and at time t are 
related by 

or, if the initial turbulence is isotropic with the spectrum, 

@& t )  = D%*Aj, @**Po,  0) 

@&o, 0) = C& - k&j/JcE) $(k,) 

@&, t )  = D2r4pAjp(a*pp - Ic, k,lk31 $ @ o ) .  by 

Notice that the quantity inside the square brackets depends only on the direc- 
tion of the wave-number vector and on a. 

To calculate the changes of intensities and Reynolds stress, the appropriate 
spectrum function must be integrated over all wave-numbers, and, unless the 
viscous effects are negligible, the results depend on the spectral form, i.e. on the 
defining scalar $(ko).  Since the purpose of including a viscous term is to model 
the effects of energy transfer to smaller eddies, it is appropriate to use a spectrum 
with a rapid cut-off at large wave-numbers, defined by 

$(kJ = (32n3)-h@L5exp ( -4k:L;) .  

In spherical polar co-ordinates for k,, integration with respect to IC, can be done 
explicitly, and it is only necessary to compute the double integrals, 

The quantity N measures the relative effect of energy loss from the large, 
energy-containing eddies of the turbulence compared with their gain from the 
shearing. With the error-law spectrum function, the rate of energy transfer is 

B = 15v,3/L2 = (@)%LE1, 

and so 

In shear flows, typical values range from about 0.22 in wakes to about 0.08 
in boundary layers. For the homogeneous shear flow of Rose (19G6), the value is 
approximately 0.20. 

3-2 
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The correlat,ion functions were calculated for zero effective viscosity. Correla- 
tion functions for displacements in the direction of the unit vector P can be 
approached through the one-dimensional spectrum function in that direction, 

where dS(k) is an  element of the surface on which k , P = 1. Then 

With spherical polar co-ordinates for k,, 

k, = Zfn. (0, $,a) 
on thc surface of integration for qiij(1?), and 

x JOm 12 $(ko) cos lr dl sin 0 a+, 

where k,, k, are orthogonal co-ordinates on the surface of integration. Then the 
integration over 1 leads to  the Fourier transform of l2y!!(k0). Choosing the defining 
scalar as 

(implying an initial correlation function of exponential form, 

1 
JOm . ~ $ ( k , )  cos ir dl = - 477 ( - k,  )' ( 3  - 5 & + (&)') exp ( - &) 

aid the computation of the correlation functions reduces t o  evaluation of a 
double integral over the angle variables. 

Appendix C. Distributions of effective strain in self-preserving flows 
I n  a plane wake with small velocity defect and no pressure gradient, the equa- 

tions for the distribution functions of velocity and effective strain, (5.3) and (5.4), 
become 

rf =f' u, 10 dlo 
VT  ax 

and 

If the length scale is defined so that 
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the solutions are 

and, for the special but relevant case of u, = DT, 

f ( r )  = esp ( - W )  

k(y) = - hR,y exp ( - iy2)  + Cjo’ exp ( - $x2) dx, 

37 

where R, = uol,/uT is the flow constant. The constant of integration C should 
be chosen to make the effective strain small at  the mean position of entrainment, 
which is nearly at q = 2. Then 

k(y) = - hRs [q exp ( - &y2) - 0*226IoT exp ( - &x2) ax] 

and the maximum value occurs near y = 1 and is nearly 0.21Rs or 2.6. 

tions may be put into the forms, 
For a plane jet issuing into still fluid, the equations for the distribution func- 

and - 

If the length scale is defined so that 

the solutions are 
and, for uT = D,, 

f(y) = sech2y 

k(q) = 2.71Rs(tanhylog(coshy) - r+Ctanhy) .  

The factor 2.71 appears because R8 is defined with the distance between the jet 
centre and the position where Ulu, =f (y )  = e-5, in this case at  q = 0.738. 
Choosing C as 0.503 makes the effective strain zero at  twice this distance (com- 
pare the wake calculation), and the maximum value of the effective strain occurs 
near y = 0.74 and is nearly 0.2223, or 6-1. 

For a mixing layer between streams of nearly equal velocity, the equations 
become u 1 dl ,  - 1 0  - q”’ = f” 

VT dx 

and - 

Defining the length-scale so that 
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k ( 7 )  = ~ [exp ( - 47,) - C]. and for vT = DT, 

Without measurements of intermittency in the plane mixing layer, it  is neceasary 
to guess the mean positions of the bounding surface, it is not likely to be very 
far from the position 7 = f 1.4, where the mean velocity is within 5 %  of the 
stream velocity on that side. Then the constant C is 0.37 and the maximum 
effective strain, a t  the flow centre, is 0*25Rs or about 7.5. 

The calculation for a boundary layer is similar to that for mixing layers, the 
differences arising from the absence of symmetry and uncertainty as to the 
effective strain in the constant-stress layer. The range of values in table 3 refers 
to possible values of this effective strain in the range 5-15. 

RS 

(an)* 

Appendix D. Entrainment constants for mixing layers between parallel 
streams 

Consider a mixing layer between streams of velocities U, and U, = Ul+uo 
with the self-preserving distribution of mean velocity, 

u = u, + u0f(x/Zo). 
The momentum equation is 

-$ U’rf’f’ fdy +g; ,=o  
ax [ uo s, 1 

if the axes are chosen so that W = 0 along the plane x = 0. Notice that this 1)lane 
is also the plane of maximum shear-stress. Integration of the equation across 
the flow leads to the momentum condition, 

where 
-m 

J --m J --m 

are non-dimensional integrals of the distribution function. Integration of the 
momentum equation from one free stream to  the centre leads to 

-g(O) =- Tm = - dzo [ - U1I1 + 1 4  . 
u; ax uo 

The equation for conservation of total energy (mean flow and fluctuation 
kinetic energy) is 



where 
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(a Ulax) dz 
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is the normal velocity in the far stream. After substitution of the similarity pro- 
files and use of the relation between rm/ut and the rate of spread, the energy 
equation becomes 

where qi is chosen so that it is an average value of within the bounding surfaces, 
i.e. 

m 

and Lc is chosen so that / 8 dz = ( 7 2  - 111) 2: lo/J%, 
- m  

?ll and y2 defining the average positions of the two bounding surfaces. Approxi- 
mating the velocity profiles by the error integral, 

substitution in the overall momentum condition shows that 

2*-1 u 1 -1 
q o = p & + 2 )  ' 

if v0 is not too large. The non-dimensional integrals are 

I 1 -  - (2744 + &yo, I, = (27T)-i- - 1 2110, 

and the energy equation is now 

From the measurements of Watt (1967), i t  may be estimated that y1 = - 1.0, 
v2  = 1.4, and so, very nearly, 

In;fd17 = 6(72-71)* 

I n  that case, the entrainment constant, 
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is given by the equation 

2-3 - +(qz - ql) --p q: = (277-4 (qz - Y l )  
7, 

and the velocity ratio does not appear explicitly. 
The equation for effective strain is for q = 0 

and, assuming similarity of the profiles of effective strain, the maximum value is 

The previous relation between rJu; and dloldx is, for the assumed profile, 

2 = (2n)-!~-p = (2n)-HR,$ 
4 

and so a,, is proportional to p. If the effective value of qi/rnL is determined by the 
effective strain, the equation for the entrainment constant shows that it should 
be nearly independent of the velocity ratio of the two streams. 

Appendix E. The effect of wall curvature on the spread of a wall jet 
I n  a wall jet, the velocity maximum occurs a t  a comparatively small distance 

from the solid boundary and the flow between the velocity maximum and the 
free stream resembles closely one half of a plane jet. The oidy important difference 
arises from hhe mean flow across the plane of maximum stress which is a con- 
sequence of the wall friction. If the wall layer between the wall and the plane of 
maximum velocity is thin, consideration of the momentum balance shows that 

- V, Tn = 7 0  - (Tm) 

(suffix nz denotes value a t  the plane) and (7,) is expected to be small a t  a place 
of zero velocity gradient. 

Self-preserving flow of a wall jet over a curved surface is dynamically possible 
if (i) the radius of curvature of the surface is everywhere the same fraction of the 
jet thickness, and (ii) the ratio of friction velocity to  the maximum velocity 
remains constant. The last condition is satisfied approximately if the Reynolds 
number of the flow is large. With no external flow, t,he flow thickness is propor- 
tional to distance from a virtual origin and the maximum velocity varies in- 
versely as the square-root of distance from the origin. 

Considcr the flow in cylindrical polar co-ordinates with axis coinciding locally 
with the axis of curvature of the surface. The equation for the mean velocity is 

8 ~ 2  a ( u W r )  a(u.rOr) a~ +- - - _-  m+- ar ar 00 

to  the usual boundary-layer approximation. Integrating from x = z,, at  the 
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velocity maximum to the ambient flow gives 

41 

To the same approximation, the equation for the velocity normal to  the surface is 

ap - u2 
ar r ' 

_ -  - 

and 

It follows that $ [ R j;+& d r ]  = - roR, 

or, if ( r - R )  < R, 

where z = ( r  -R). 

&!: U 2 ( 1 - z / R ) d z  = -rOR, 

The equation for the kinetic energy of the flow is 

and, making the assumptions of profile similarity, we find that 

u;z0 g 3 + 1  and Z P O  0 0  1 
- +" 2u I I = 1 d 

a[ ( 
where cf = rO/ug, 

For convenience, the non-dimensional co-ordinate is taken to be 7 = ( z  - z,J/Zo. 
The system of equations is completed by a reIation between the angle of spread 
and the ratio r,,Ju;, and by the relation between effective strain and the value 
of qi/rm. At x = z,, the equation of motion is nearly 

and, since 



42 A .  A .  Townsend 

Assuming similarity of the stress profiles, the maximum stress is 

I d  
R d8 

7,n = - cl( 1 - &/R) ( 1  - 2I2Z,/R) 0 - (u$). 

The discussion of the effect of wall curvature can be simplified by ignoring 
the wall stress, which is justified if both curvature and wall stress act as pertur- 
bations of the basic plane jet. Otherwise, the known behaviour of the plane jet 
must be used to determine the various parameters, such as qo/Z,, LJ0 and r,/qi. 
i n  the absence of wall stress, 

%;i0 ( I ~ -  I,, i) = M 

a constant, and from the known variation of the scales in self-preserving Bow, 
the energy equation becomes 

Inserting the ratio rm/u;, and defining 
p=--!? 1 dl 

R d8 
the equation becomes 

( I ,  + 2 4  i) +GI $ ( 1  - (1 + 2 1  , R  ) 0 7 p 

where C, is a constant. As usual, the ratio q$r, is a function of effective strain or 
r,,Ju;. For moderate values of Zo/R, the solution can be found by iteration arid is 

where Po is the value for zero curvature, and Q is the ratio of the advective gain 
of turbulent energy to the energy dissipation. For a profile shape, 

ftr) = exp ( - itr2), 
I, = in*, I3 = ~ * / 6 4 ,  I p  = 0.50, 

and Y,J,$,, % 2.0. Measurements of a plane jet (Bradbury 1965) suggest that 
Q z 0.15, and then P = Po( 1 + 4.8Zo/R). 

No allowance has been made for a variation of 7,Jq;. For rm/qi cc p-4, the 
coefficient of I,/R is about 2.0, but the calculated effect of curvature is still 
comparable with that observed. 
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Appendix F. Conditions for self-preserving development in axisym- 
metric wakes and jets 

the equations for momentum and energy show that 
Consider first the axisymmetric jet. I f  self-preserving development occurs, 

- p = constant. ugl; = constant, - - dl ,  
ax 

The equation for the total kinetic energy is 

or, after substituting the self-preserving forms, 

where In = fom [f(x)]n x ax. 

To estimate the maximum shear stress, we know that, on the axis, 

1 a(7r) - duo u:dZ, _ _ _  --(‘ - = --- 
r ar O a x  I ,  ax ’ 

ar 
-. - - - ;pug/z, 
ar 

1.e. 

and, approximately, r, = $Cl/3ui, 

where Cl is a constant about e-4 or 0-6. Then the energy equation becomes 

2 
and has a real root if c1 @3!L (1113)-4 > 4. 

7rn l o L c  

The development of a self-preserving, axisymmetric wake with small velocity 
defect is described by 

Ulu,Z; = Constant, -- U 1 d z ~  = p = constant, 
uo a x  

and the equation for the total energy is 

Substitution of the similar profiles leads to 
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On the axis, 

and 
a7 
- ar = -pu;/l0. 

Then, as before 7, = CIu;P, 

and the equation for the entrainment constant is 

It' has real roots if 

Approximating the velocity distribution by 

f (7)  = e-ha 

1 - 1  1 - 1  1 - 1  the constants are I -  9 2 - 2 7  3 - 3 ,  

and measurements in jets show that, nearly, 

70/10 = 2, L,/ro = 1.5. 

IVith these values, the jet may develop in a self-preserving way if 

CIq;/7, > 1.73, 

CIq$/rm > 3.0. and a wake may if 

With the current approximations to  the profiles, the ratio of total turbulent 
energy to  total mean flow energy in a jet is 

and measurements in jets indicate that it is near 0.4. Inserting the observed 
rate of spread of a jet, p =  0.08, we find that 

c,q;/7,, = 2.5,  

sufficient for self-preserving development of a jet but not for a wake. If account 
is taken of the likely variation of q;/r, with entrainment constant, the value of 
C,q;/rm for a wake is less than that for a jet and the inequality is worse. 

Appendix G. The condition for self-preserving flow of a distorted wake 
Consider a plane wake immersed in the ambient flow, 

U, = constant, V, = tcU,y, W, = -aUIz.  

The equation for the momentum flow is 
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and self-preserving development is consistent with the momentum and energy 
equation if uo cc 1, cc e-tax. 

The equation for the total energy is 

including a term aUl (v2 - wz) dz describing the generation of turbulent energy 

by working of the ambient velocity field against normal Reynolds stresses 
induced by the distortion. In  terms of the similarity functions, the energy equa- 

snm - - 
tion is 

where 

and 

The entrainment consta.nt is 

At the central plane of the wake, 

p = aUll,/uo. 

and so 7, = gclu;p. 
Then the equation for the entrainment constant becomes 

with real roots if 

- _ _  
After a total strain of about three, the ratio (2- w2)/(v2 + w2) is about - 0.4 

and the integral IZ3 is about 1.0. Substituting values of the constants for the plane 
wake, real roots are expected if 

2 f 4123 < o*~o(c1qi /7nl )2 ,  

a condition that cannot be satisfied for any plausible values of Clqg/rnl and of 1223. 
The implication is that the proportion of turbulent energy derived from inter- 
action between the turbulent motion and the distortion becomes large compared 
with that derived from the mean flow energy of the wake proper. 



46 A .  A .  Townsend 

R E F E R E N C E S  

BALDWIN, L. V. & SANDBORN, V. A. 1968 A.I.A.A. J .  6, 1163. 
BATCHELOR, G. K.  & PROUDMAN, I. 1954 Quart. J .  Mech. uppl. Math. 7, 83. 
BOWDEN, K. F. & HOWE, M. R. 1963 J .  Fluid Mech. 17, 271. 
BRADBURY, L. J. S. 1965 J .  Fluid Mech. 23, 31. 
BRADSHAW, P., FERRISS, D. H. & ATWELL, N. P. 1967 J .  Fluid Mec?b. 28, 593. 
BRADSHAW, P., FERRISS, D. H. & JOHNSON, R. F. 1964 J .  Fluid Mech. 19, 591. 
COMTE-BELLOT, G. 1961 C. r. hebd. Se'anc. Acad. Sci., Paris, 253, 2846. 
COMTE-BELLOT, G. & CORRSIN, S. 1966 J .  Fluid Mech. 25, 657. 
FAVRE, A., GAVIGILO, J. & DUMAS, R. 1957 J .  Fluid Mech. 2, 313. 
FAVRE, A., GAVIGLIO, J. & DUMAS, R. 1962 La Mdcanique de la Turbulence, p.  419. 

FEKETE, G. I. 1963 Mech. Eng. Dept., McGill Univ., Montreal, Report 63-11. 
FIRDLER, H. & HEAD, N. R. 1966 J .  Fluid Mech. 25, 719. 
FRENKIEL, P. N. & KLEBANOFF, P. S. 1967 Phys. Fluids, 10, 1737. 
GARTSHORE, I. S. 1966 J .  Fluid Mech. 24, 89. 
GIBSON, C. H., LIN, S. C. & CHEN, C. C. 1967 A.I.A.A. J .  6, 642. 
GRANT, H. L. 1958 J .  Fluid Mech. 4, 149. 
KEFFER, J. F. 1965 J .  Fluid Mech. 22, 135. 
KLINE, S. J., REYNOLDS, W. C., SCHRAUB, F. A. & RUNSTADLER, P. W. 1967 J .  Fluid 

KOVASZNAY, L. S. G. 1968 NATO Sgmposiutn o n  Transition. London. 
KUO, Y.-H. & BALDWIN, L. V. 1967 J .  Fluid Mech. 27, 353. 
LUMLEY, J. L. 1965 Atmospheric turbulence and radio wave propagation. Proc. Intern. 

Colloquium, Moscow. 
MARECHAL, J. 1967 C. r. hebd. Sianc. Acad. Sci., Paris, 265A, 478. 
MOBBS, F. R. 1968 J .  Fluid Mech. 33, 227. 
NEE, V. W. & KOVASZNAY, L. S. G. 1969 Phys. Fluids, 12, 473. 
NEWMAN, B. G. 1968 Mech. Eng. Dept., McGill Univ., Montreal, Report 68-10. 
PAYNE, F. R. 1966 Dept. Aerospace Eng., Penn. State Univ. 
PEARSON, J. R. A. 1959 J .  Fluid Mech. 5, 274. 
REYNOLDS, A. J. 1962 J .  Fluid Mech. 13, 333. 
ROSE, W. G. 1966 J .  Fluid Mech. 25, 97. 
SABIN, C. M. 1963 Stanford Univ. Report MD-9. 
STEWART, R. W. 1951 Ph.D. Dissertation, University of Cambridge. 
TRITTON, D. J. 1967 J .  Fluid Mech. 28, 439. 
TOWNSEND, A. A. 1954 Quart. J .  Mech. appl. Math. 4, 308. 
TOWNSEND, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University 

TOWNSEND, A. A. 1966 J .  Fluid Mech. 26, 689. 
TUCKER, H. J. & REYNOLDS, A. J. 1968 J .  Fluid Mech. 32, 1968. 
WATT, W. E. 1967 Dept. Mech. Eng., Univ. of Toronto, TP 6705. 

Paris: C.N.R.S. 

Mech. 30, 741. 

Press. 


